
Watch Your Steps: Local Image and Scene Editing by Text Instructions

Ashkan Mirzaei1,2 Tristan Aumentado-Armstrong1,2,4 Marcus A. Brubaker1,3,4

Jonathan Kelly2 Alex Levinshtein1 Konstantinos G. Derpanis1,3,4 Igor Gilitschenski2,4

1Samsung AI Centre Toronto 2University of Toronto 3York University 4Vector Institute for AI

Normalized
Difference

Original Image Noisy Image

Relevance Map

IP2P
Unet

“Make
the owl a
falcon”

IP2P
Unet

“ ”

“Add cherry blossoms” “Give her sunglasses” “Make him old”

Re
le

va
nc

e-
gu

id
ed

Im

ag
e

Ed
itin

g
Re

le
va

nc
e-

gu
id

ed

Sc
en

e
Ed

itin
g

“Turn the bear into a Grizzly bear”“Turn the bear into a panda”

Figure 1. Overview of the calculation of the relevance map (left inset), and sample outputs on image (top-right inset) and neural radiance
field (bottom-right inset) editing guided by the relevance. Given an image or a Neural Radiance Field (NeRF), our goal is to change the
input according to a textual instruction. The relevance map is the disagreement between noise predictions with and without the instruction.
For both image and scene editing, we use the relevance map to confine the changes to the most relevant region, according to the edit text.

Abstract

Denoising diffusion models have enabled high-quality
image generation and editing. We present a method to lo-
calize the desired edit region implicit in a text instruction.
We leverage InstructPix2Pix (IP2P) and identify the dis-
crepancy between IP2P predictions with and without the in-
struction. This discrepancy is referred to as the relevance
map. The relevance map conveys the importance of chang-
ing each pixel to achieve the edits, and is used to to guide
the modifications. This guidance ensures that the irrelevant
pixels remain unchanged. Relevance maps are further used
to enhance the quality of text-guided editing of 3D scenes in
the form of neural radiance fields. A field is trained on rele-
vance maps of training views, denoted as the relevance field,
defining the 3D region within which modifications should be
made. We perform iterative updates on the training views
guided by rendered relevance maps from the relevance field.
Our method achieves state-of-the-art performance on both
image and NeRF editing tasks. Project page.

1. Introduction

The crucial role of images in various aspects of mod-
ern societies, including social media, marketing, and edu-
cation, naturally introduces a desire for automated gener-
ative approaches for image editing [6, 9, 17, 37, 39]. Neu-
ral radiance fields [42] (NeRFs) are increasingly acces-
sible [8, 48, 54] and popular as an intuitive visualization
modality, thus editing NeRFs is also receiving significant
attention [15, 43, 44]. The remarkable success of denois-
ing diffusion models [18,63] in generating high-quality im-
ages [12, 19, 57, 59, 66] from text [2, 49, 55, 58] has led to
diffusion models being adopted for image editing [1,6,9,17,
23, 39, 47, 53]. Recently, InstructNeRF2NeRF (IN2N) [15]
demonstrated how to leverage InstructPix2Pix [6] (IP2P) for
editing NeRFs [42]. We argue that a notable proportion of
image and scene editing tasks can be executed by only local
modifications. Consider the top-right example in Figure 1,
to “make him old”. Technically, any output depicting an
old man satisfies the instruction. To maintain fidelity to the
input and avoid unnecessary variability, it is crucial to con-

1

https://ashmrz.github.io/WatchYourSteps

fine modifications within local boundaries (within his face
in this example) and naturally prefer parsimonious edits. By
keeping changes within the relevant region, the integrity of
the original input is better preserved, while we can ensure
that the desired edit is accurately reflected in the output.

Despite the promising results, diffusion-based image ed-
itors generally lack a mechanism to automatically local-
ize the edit regions. These methods either ask users for a
mask [37], rely on the global information kept in a noisy
input as a starting point [39], or condition the denoiser
on the input [6]. Nevertheless, all of these methods tend
to over-edit [6, 9]. Relying on IP2P to iteratively update
NeRF’s training dataset, IN2N [15] over-edits scenes. Re-
cently, DiffEdit [9] proposed using the difference between
the noise predictions conditioned on captions to localize im-
age edits; however, it is slow due to denoising diffusion im-
plicit model [64] (DDIM) inversion, its quality is inferior to
IP2P [6], and it requires both input and output captions.

In this paper, we provide an approach to predict the scope
implicit in edit instructions to localize image edits. We de-
note the discrepancy between the noise predictions by IP2P
conditioned on the instruction and an empty text as the rel-
evance map. Binarizing the relevance map gives the mask
of the region that should be edited. We force the denois-
ing process to not change the unmasked pixels by replac-
ing the unmasked region after each denoising iteration with
the noisy input [37]. For NeRF editing by iterative dataset
updates [15], we leverage the power of relevance maps to
localize the edits. Note that, across different views, the
relevance maps can be slightly inconsistent. To ensure 3D
consistency, we train a field on relevance maps from train-
ing views, called the relevance field. Rendered views from
the relevance field are then binarized and used as masks for
editing training views. Our approach achieves state-of-the-
art performance on both image and NeRF editing tasks.

In summary, (1) we present relevance maps to predict
the scope of an editing instruction on an image, (2) we use
the relevance maps to localize instruction-based image edit-
ing, and (3) we lift the maps into 3D by relevance fields to
leverage the localization in scene editing.

2. Related work
Diffusion models for image editing. Diffusion mod-
els have shown impressive performance in image synthe-
sis [12, 18, 19, 57, 59, 63, 66]. Text-to-image diffusion mod-
els are able to generate high-quality images based on cap-
tions [49, 53, 55, 58]. Motivated by this success, pre-trained
diffusion models have been used to edit images based on
text descriptions [1, 17, 23, 50, 53]. SDEdit [39] adds noise
to input images and denoises them conditioned on a desired
description, but lacks a mechanism to keep the details of the
original image. DiffEdit [9] uses of the disagreement in pre-
dictions of stable diffusion [55] with input and output cap-

D
en

oi
se

 S
te

p

IP2P

“Make
the owl a
falcon”

Threshold

Re
pa

lc
e

U
nm

as
ke

d

IP2P

Input Image

Edited Image

InstructionMaskRelevance Map Original Image

Figure 2. Overview of a denoising step for image editing via
relevance-guidance. The relevance map is binarized to get the edit
mask. After denoising the output of the last stage with IP2P, the
unmasked pixels are swapped with the noisy input to ensure con-
sistency to the input throughout the process.

tions, but can not handle instructions and fails on more com-
plex captions. Recently, IP2P [6] uses Prompt2Prompt [17]
to create a dataset, and trains a denoiser conditioned on edit
instructions and the original image. IP2P [6] outperforms
the previous methods, but tends to over-edit images. Sim-
ply increasing the image guidance scale or reducing the text
guidance scale has adverse effects on the region that actu-
ally should be edited. We propose a method to predict the
relevance of each latent pixel to the edit, and use it to limit
the scope of the edit.
Editing neural fields. The advent of NeRFs [42] pow-
ered by positional encoding [14, 67, 70] has led to signif-
icant popularity of neural rendering models [69]. NeRFs
are getting faster [5, 7, 8, 16, 24, 27, 48, 54, 60, 78], and
less data-intensive [20, 30, 31, 35, 51, 74, 75, 79], with im-
proved rendering quality [3,4,11,32,71]. The popularity of
NeRFs naturally introduces a desire for editing tools. Re-
cent works [10, 21, 22, 26, 28, 29, 36, 40, 45, 65, 72, 77, 80]
provide NeRF editing approaches, but are typically limited
to simple scenes or objects, or perform niche editing tasks.
More works [33, 43, 44, 76] provide 3D inpainting methods
to remove unwanted objects from NeRFs. IN2N [15] in-
troduced leveraging IP2P [6] to edit scenes based on text
instructions. Although promising, the outputs lack sharp-
ness due to: i) the spatial ambiguity caused by the IP2P de-
coder while upsampling latent pixels to patches, and ii) the
view-inconsistency due to the 3D-unawareness of IP2P. To
alleviate these problems, we leverage our relevance-guided
image editor combined with a 3D relevance field to localize
the edits in the 3D space and improve consistency.

2

3. Background

Neural radiance fields. NeRFs represent a 3D scene as a
neural field, f✓ : (x, d) ! (c,�), mapping a 3D coordi-
nate, x 2 R3 and a view direction, d 2 S2, to a colour,
c 2 [0, 1]3, and a density, � 2 R+. The field parame-
ters, ✓, are optimized to fit the field representation to mul-
tiview posed image sets. The field is paired with a ren-
dering operator, implemented as the quadrature approxi-
mation of the classical volumetric rendering integral [38].
For a ray, r, parametrized as r = o + td, where o is the
origin and d is the view-direction, rendering begins with
sampling N points, {ti}Ni=1, on the ray between near and
far bounds. The rendered colour is then obtained via the
volumetric rendering equation, bC(r) =

PN
i=1 wici, where

wi = Ti(1 � exp(��i�i)) is the contribution of the i-th
point, �i = ti+1 � ti are the adjacent point distances, and
Ti = exp(�

Pi�1
j=1 �j�j) is the transmittance.

InstructPix2Pix. Given an image, I , and a text instruction,
CT , describing the edit, IP2P follows the instruction to edit
I . IP2P is trained on a dataset where for each I and CT , a
sample edited image, Iout, is given. IP2P is based on latent
diffusion [56], where a variational autoencoder [25] (VAE)
with encoder, E , and decoder, D, is used for improved ef-
ficiency and quality. For training, noise, ✏ ⇠ N (0, 1), is
added to z = E(Iout) to get the noisy latent, zt, where
the random timestep, t 2 T , determines the noise level.
The denoiser, ✏✓, is initialized with stable diffusion [56]
weights, and fine-tuned to minimize the diffusion objective,
EIout,I,✏,t

⇥
k✏ � ✏✓(zt, t, I, CT))k22

⇤
. During training, con-

ditions are randomly removed [34] by setting I = ;I and
CT = ;T to further allow unconditional denoising. Thus,
the strength of the edit can be controlled by the image guid-
ance scale, sI , and the text guidance scale, sT . The modi-
fied score estimate is then obtained as

e✏✓(zt, t, I,CT) = ✏✓(zt, t, ;I , ;T)
+ sI

�
✏✓(zt, t, I, ;T)� ✏✓(zt, t, ;I , ;T)

�

+ sT
�
✏✓(zt, t, I, CT)� ✏✓(zt, t, I, ;T)

�
. (1)

After training, the denoiser can be used to either generate
edited images from pure noise, or to iteratively denoise a
noisy version of an input image to get an output.

4. Method

We describe the calculation of the relevance map in § 4.1.
The relevance map is to determine the pixels that should be
edited, and is used as a form of mask guidance in § 4.2 for
localized image editing. In § 4.3, we introduce relevance
fields to allow similar edit localization for 3D scene editing.
Implementation details can be found in § 4.4.

Relevance Field

Relevance-guided
Image Editor

Original Image

“Turn the
bear into a

panda”

InstructionRendered Image

Rendered Relevance Condition

Dataset
Update

Render

Edited Image

Relevance Map

Figure 3. Overview of our relevance-guided NeRF editing method.
Iteratively, we take a random view and render it using both the
main NeRF and the relevance field. The rendered image is edited
guided by the rendered relelvance to only change pixels that are
highly relevant to the task. IP2P [6] is used as the backbone of the
editing method, and is always conditioned on the initial captures
from the scene. This is to prevent drastic drifts from the origi-
nal scene in the recurrent synthesis process [15]. The relevance-
guided image editing module (§ 4.2) returns an edited image and
an updated relevance, which are used to update the corresponding
training views for the NeRF and the relevance field, respectively.

4.1. Relevance map calculation
Given an image, I , and an edit instruction, CT , we

leverage IP2P [6] to predict the relevance of each pixel to
the edit, i.e., the likelihood that a given pixel needs to be
changed, based on the editing task. First, we add noise to
the encoded image, E(I), until a fixed timestep, trel, to ob-
tain the noisy latent,

ztrel =
p
↵trelE(I) +

p
1� ↵trel✏, (2)

where ✏ ⇠ N (0, 1) is a random noise, and ↵t is the noise
scheduling factor at timestep t. Note that trel is a constant
noise level used in our method as a hyperparameter. We
then use IP2P’s noise prediction Unet, ✏✓, to get two differ-
ent predictions: i) the predicted noise conditioned on both
the image and the text, ✏I,T (ztrel) = ✏✓(ztrel , trel, I, CT), and
ii) the predicted noise conditioned only on the image and the
empty text as the instruction, ✏I(ztrel) = ✏✓(ztrel , trel, I, “”).
The difference between ✏I,T (ztrel) and ✏I(ztrel) is that only
the former is aware of the text prompt. We use the magni-
tude of the mismatch between these two values as a mea-
surement of the relevance of each pixel to the edit. To this
end, we first calculate the absolute difference between the
two values, which we call the relevance map,

Rx,I,T = |✏I,T (ztrel)� ✏I(ztrel)|. (3)

For robustness, we further clamp the outlier values using
interquartile range (IQR) with ratio 1.5, and normalize the

3

relevance map between 0 and 1. Figure 1 (left inset) illus-
trates an overview of the calculation of the relevance mask.

4.2. Relevance-guided image editing
We propose to use the relevance map to guide the gen-

eration of the edited image, and to localize the edited re-
gion. For a pixel, a high relevance value means that the
pixel is likely to be relevant to the edit, and we allow it to
change. In contrast, a low relevance map value signals that
the pixel is unlikely to require change. We apply a mask
threshold, ⌧ 2 [0, 1], on the relevance map to get the edit
mask, Mx,I,T = (Rx,I,T � ⌧), enclosing the pixels we
allow to be edited. To edit an encoded input image, x, the
encoded image, E(x), is diffused to a fixed noise level, tedit,
to get the starting noisy latent, ztedit . The edit noise level,
tedit, determines the strength of the edit; setting it to 0 re-
sults in the input image being unchanged, while setting it to
the maximum diffusion timestep starts the generation from
pure noise. Each denoising stage takes a noisy latent, zt,
and denoises it to get zt�1. The denoising step begins with
predicting the noise via IP2P to get e✏t = e✏✓(zt, t, I, CT).
Using e✏t and the DDIM [64] procedure, the mask-unaware
prediction at timestep t� 1 is

ezt�1 =
p
↵t�1

⇣xt �
p
1� ↵te✏tp
↵t

⌘
+
p

1� ↵t�1e✏t. (4)

The unedited noisy latent of the input image, x, at timestep
t� 1 would have been bzt�1 =

p
↵t�1E(x) +

p
1� ↵t�1✏.

To obtain zt�1, we combine the mask unaware prediction,
ezt�1, and the unedited noisy latent, bzt�1, as

zt�1 = ezt�1 �Mx,I,T + bzt�1 � (1�Mx,I,T). (5)

This way, by replacing the unmasked pixels with the noisy
version of the input image, we restrain the generation pro-
cess from changing any pixel outside of the mask. After
iterative denoising, the edited image, D(z0), is obtained.
Figure 2 presents an overview of our process.

4.3. Relevance field for scene editing
The idea of localizing the edits based on relevance maps

can be extended to editing 3D scenes. Given a multiview
capture, {Ii}ni=1, of a static scene and the corresponding
camera poses, the goal is to edit a NeRF, f✓, fitted to
the scene according to a text prompt, CT . Motivated by
IN2N [15], we perform iterative training view updates by
replacing one training view, It, at a time by its edited coun-
terpart according to a text prompt, CT . To ensure the con-
sistency of the localization of edits across different views,
we fit a 3D neural field, which we call the relevance field, to
the relevance maps of all the training views. While editing
each of the views, we render the corresponding relevance
map from the relevance field to guide the edit.

To implement the relevance field, we extend f✓ to re-
turn a view-independent relevance, r(x) 2 [0, 1], for every
point, x, in the 3D space. Notice that the geometry of the
main NeRF and the relevance field is shared, and when fit-
ting the relevance field, we always detach the gradients of
the densities to ensure that the potential inconsistencies do
not affect the geometry of the main scene. For a ray, r, the
rendered relevance, bR(r), can be simply calculated by re-
placing the point-wise colours with relevance values in the
volumetric rendering equation, as bR(r) =

PN
i=1 wiri.

During the NeRF editing process, every nedit iterations,
we randomly sample a training view Ii. The first time we
sample Ii, the relevance map, RIi,I,T , is calculated and
added to the training data of the relevance field. From
the same view, the image, bIi, and the relevance map, bRi,
are rendered using f✓. The relevance-guided image editor
from § 4.2 is used to locally edit bIi, conditioned on the orig-
inal captured image, Ii, and the text condition, CT . To this
end, the encoded rendered image, E(bIi), is diffused until a
random timestep, tedit 2 T , to obtain ztedit . The noisy la-
tent, ztedit , is iteratively denoised conditioned on the original
unedited view, Ii, and the text prompt, CT , guided by the
rendered relevance map, bRi, to obtain the edited training
view, eIi = D(z0). Since the several-fold upsampling in-
duced by the decoder could lead to inconsistencies in the
unedited region, we replace the unedited RGB pixels in eIi
with their counterparts from Ii using a relevance mask ren-
dered in the original image resolution. After editing, eIi
replaces the corresponding training view to supervise the
main NeRF (the color field).

4.4. Implementation details

In all of our experiments, we set trel = 0.8, i.e., we apply
80% of the noise to predict the relevance map. For IP2P,
we used the model available on HuggingFace, based on the
diffusers package. For NeRF editing, we used the nerfacto
model from NeRFStudio [68]. During the iterative dataset
updates, we performed edits with noise levels (timesteps)
randomly sampled from [0.02, 0.98]. We update a single
training view every nedit = 10 iterations. Each image is
updated using 20 denoising steps for NeRF editing, and 100
denoising steps for image editing. For the relevance field
implementation, we borrowed the same hyperparameters as
the nerfacto field [68]; however, we never used the densities
from this field, and only used the geometry from the main
radiance field. The threshold, ⌧ is set between [0.4, 0.6] in
all the experiments, unless stated otherwise. Each NeRF is
first trained for 30,000 iterations on the original scene, and
then edited for 3,000 or 4,000 iterations depending on the
number of training views.

4

5. Experiments
Datasets. For image editing, we follow IP2P [6] and use
their dataset of diverse images and editing instructions.
The test set we used consists of 5,000 images, paired with
instructions, and input and output captions. NeRF edit-
ing evaluation is done using scenes from IN2N [15] and
LLFF [41]. We use 14 different NeRF editing tasks (i.e.,
text instructions) for the quantitative experiments. For each,
a scene is edited using an instruction, and evaluated against
a desired output caption. IN2N and LLFF provide mul-
tiview captures of forward-facing and 360� static scenes.
Colmap [61, 62] is used to recover camera parameters.
Metrics. Following IP2P [6], for image editing, we use
CLIP image similarity [52] and CLIP text-image direction
similarity [13]. The former is the similarity between the
CLIP embeddings of the edited and the original images.
The latter measures the agreement between the change of
the images (in CLIP space) and the change of the text cap-
tions. For scene editing, we use CLIP text-image similar-
ity (Txt-Img Sim.) which is the cosine similarity of the
CLIP embeddings of output views and the output caption.
In addition, CLIP frame similarity (Frame Sim.) measures
the cosine similarity of the consecutive frames in CLIP
space. CLIP edit similarity (Edit Sim.) measures the di-
rectional agreement between the changes applied to neigh-
bouring frames in CLIP space, as described in IN2N [15].
CLIP image similarity (Image Sim.) and edit PSNR mea-
sure the consistency of the edited views and the input views,
in the CLIP and RGB spaces, respectively. Finally, we use
NIQE [46], a no-reference image quality metric, to evaluate
the quality and sharpness of the outputs.
Image editing baselines. For image editing, we compare
against state-of-the-art methods, including DiffEdit [9],
SDEdit [39], and IP2P [6]. Notice that DiffEdit expects
input and output captions, and is evaluated with its desired
inputs instead of the edit instruction. SDEdit expects the
output caption; we evaluate it with the output caption as
SDEdit (out caption) and with the edit instruction as SDEdit
(instruction), separately.
NeRF editing baselines. We quantitatively evaluate against
IN2N [15] and per-frame IP2P, which independently edits
rendered views of the input NeRF via IP2P [6]. We fur-
ther compare our model against NeRF-Art [73], which uses
CLIP similarity of the scene and a caption to edit scenes.
Additional baselines include IN2N [15] with stable diffu-
sion [55] (SD) rather than IP2P, and the Score Distillation
Sampling [51] (SDS) loss with IP2P.

5.1. Results
Image editing. We provide quantitative evaluation of our
relevance-guided image editing method in Figure 4, based
on the IP2P [6] dataset. The figure shows the result of each
model based on two competing metrics; similarity to the in-

Figure 4. Quantitative image editing evaluation. Our model
achieves better text-image direction similarity (x-axis), while
maintaining higher fidelity to the input (y-axis). The text-guidance
is set to 7.5 for every method. We pick SDEdit’s strength from
[0.1, 0.9] and Diffedit’s encoding-ratio from [0.5, 0.9]. For IP2P,
SI is changed between [1, 2.2]. For our method, sI is set to 1.

put image (y-axis), and the agreement with the edit (x-axis).
Compared to the baselines, our model achieves higher im-
age consistency with similar directional similarities. Ad-
ditionally, notice that increasing the mask threshold, ⌧ , in-
creases the image similarity as a smaller region of the im-
ages is being edited. However, overly increasing ⌧ has a
detrimental effect on successfully achieving the edit.

DiffEdit [9] requires access to both input and output
captions. Even with this information, since the captions
in IP2P dataset are relatively complex rather than simple
class names or high-level descriptions, DiffEdit fails to per-
form appropriate edits. In particular, when DiffEdit is only
given the output caption and an empty text as the input cap-
tion, i.e., DiffEdit (out caption), it never achieves higher
text-image similarities, and the inputs remain relatively un-
changed. This is due in part to the failure of DiffEdit in
predicting the right masks; thus, the generative process is
unable to apply proper changes to achieve successful ed-
its. For SDEdit [39, 55], the fidelity of the outputs to the
input images drop significantly as the strength of the edit
is increased. This drop is due to the lack of an explicit
mechanism to ensure consistency. In contrast to our model,
SDEdit relies on the information kept in the noisy latent;
however, in later diffusion stages, the noisy latent retains
global information about the input, but lacks local details.

In many editing scenarios, the task can be fulfilled by
only changing a local region of the image. Our method
outperforms all the baselines by localizing the edits, and is
able to produce on-par text-image similarities to IP2P, while
keeping the outputs more consistent with the inputs. We
provide qualitative comparisons in Figures 5 and 6. Our

5

“What if she was from an anime?” “Put her in a suit” “Turn her to a zombie”

“Give her prescription glasses” “Turn her into a pharaoh” “Turn her face into a Disney character”

IP2P OursInput Image IP2P Ours IP2P Ours

IP2P OursInput Image IP2P Ours IP2P Ours

Figure 5. Our image editing results compared to IP2P. For both models, sT and sI are set to 7.5 and 1, respectively. IP2P fails to isolate
the specified region, and over-edits the input. Our model explicitly predicts the scope of the edit, and limits the edit inside a specific region.

"Make it a bus instead of a car""Make it a snow globe"

"Make the fields full of daisies" "Make the castle a lighthouse"

"Swap out the Dallas Divide for the Grand Canyon" "It is a graphic novel"

"Replace the barn with a castle" “Turn it into a Hotel”

DiffEdit

(In/out captions)

SDEdit
(instruction)Input OursDiffEdit

(out caption)
SDEdit

(caption)
DiffEdit

(In/out captions)
SDEdit

(instruction)Input OursDiffEdit

(out caption)

SDEdit
(caption)

Figure 6. Comparison of our image editing method against DiffEdit [9] and SDEdit [39]. DiffEdit requires the captions of both the input
and output, but still fails to perform the edit as the captions in IP2P [6] dataset are relatively complex. SDEdit [39] performs better when it
is given the output caption. Our model follows the instructions more closely, while maintaining coherence with the input.

outputs closely match the inputs; edits are only applied
where necessary. See supplemental for more examples.

NeRF editing. We evaluate our method against the base-
lines on scenes from LLFF [41] and IN2N [15]. Table 1
contains quantitative results based on 14 scene editing tasks.
Both our method and IN2N perform on-par with per-frame
IP2P in terms of CLIP [52] text-image similarity, mean-
ing the edited scenes successfully match the output cap-
tions. CLIP frame similarity and CLIP edit similarity show
that IN2N and our method produce view-consistent results,
whereas IP2P independently edits rendered views and is un-
able to maintain consistency. CLIP image similarity and
Edit PSNR compare the cosine similarity and PSNR be-

tween each rendered view from the edited NeRF and from
the input NeRF. They show that our method keeps the edited
scene more consistent with the input scene. Finally, in terms
of NIQE [46], a no-reference image quality metric, our
method outperforms IN2N by producing sharper and higher
quality results. Since per-frame IP2P’s outputs are direct
returns of a diffusion model rather than a NeRF, they lack
typical NeRF artifacts and thus NIQE is higher for IP2P.

Qualitative examples of our scene editing results are
shown in Figure 7. Our model edits the region most relevant
to the edit, while keeping the rest of the scene unchanged.
For example, while editing the bear statue and changing it
to a panda, a grizzly bear, or a polar bear, the background

6

“Turn the bear into a panda”“Turn the bear into a polar bear”“Turn the bear into a Grizzly bear”Input NeRF

“Turn him into Albert Einstein” “Give him a mustache” “Turn him into Heath Ledger’s joker”Input NeRF

“Make it look like it just snowed” “Make it stormy”Input NeRF

Figure 7. Qualitative outputs of our NeRF editing method. For each of the 3 scenes and each text instruction, we provide multiview
renderings of the edited NeRF to show view consistency. Our method follows the text, yet keeps the regions less relevant to the task intact.

“Turn his face into a bronze statue” “Give him blue hair”

Original NeRF IN2N Ours Original NeRF IN2N Ours
“Turn the bear into a panda”

Original NeRF IN2N Ours

Figure 8. Comparison of our scene editing results against
IN2N [15]. The relevance field enables us to localize the edit to
the most significant regions. Editing a smaller region reduces the
decoder spatial ambiguity problem on unedited pixels. Moreover,
it improves the view consistency in the edited region as editing a
small part is more likely to produce consistent results across the
views. Finally, having a small NeRF reconstruction loss outside of
the mask improves the convergence in the masked region.

Table 1. Evaluation of our model on scene editing. Our model
achieves similar performance to IN2N [15] and per-frame IP2P [6]
in terms of CLIP text-image similarity of the edited frames and
output captions. As IP2P is independently editing views, it is in-
ferior to the other methods in terms of consistency between the
neighbouring frames and the edits applied to them. In terms of
image quality (NIQE), our method outperforms the other 3D base-
line, IN2N, by producing sharper and higher quality renderings.

Method Txt-Img
Sim."

Frame
Sim."

Edit
Sim."

Image
Sim."

Edit
PSNR" NIQE#

IP2P [6] 0.2770 0.9669 0.8082 0.9111 19.44 4.02
IN2N [15] 0.2683 0.9865 0.8822 0.8649 28.70 6.43
Ours 0.2673 0.9876 0.8754 0.8910 31.01 5.53

Original NeRF

“Tolkien Elf”

NeRF-Art IN2N

“Turn him into the Tolkien Elf”

Ours

Figure 9. Comparison of our scene editing method against NeRF-
Art [73] and IN2N [15]. The baselines modify the background,
shirt, and hair of the person, while our model only edits the eyes
and ears. The extraneous changes of the baselines can even fail
to preserve important scene semantics (in this case, the individ-
ual’s identity). In contrast, our method applies only the minimum
change required for the desired semantic alteration.

and the stage underneath the statue have remained intact,
while the statue itself is changed to desired animals with
sharp textures (notice the texture of the fur).

We further provide qualitative comparisons to the base-
lines. As shown in Figure 8, built directly on IP2P, IN2N
has the same tendency to over-edit scenes. In the case of
giving the guy blue hair, notice how it has also changed the
t-shirt, eyes, and background colours. It has also changed
the whole torso of the other person to a bronze statue, where
the prompt has only asked for changing the face. In the bear
scene, the background in IN2N output is blurred. This is
due in part to the ambiguity of VAE decoder in upsampling,
resulting in minor misalignments between different views.
Moreover, since IP2P does not attempt to prevent changes
to the background, some of the edited views have an al-
tered background. This inconsistency has resulted in a loss
of sharpness. It also disrupts the optimization, as network
capacities and loss gradients are allocated to background in-
consistencies; hence, IN2N outputs are not as sharp as our
result. Moreover, IP2P is constrained to only edit the bear

7

IN2N w/ SD SDS w/ IP2P OursOriginal NeRF “T
ur

n
th

e
be

ar
 in

to
 a

 g
riz

zly
 b

ea
r”

Figure 10. Qualitative comparison of our scene editing method
against two baselines. IN2N w/ SD performs the same iterative
dataset updates as IN2N [15], but with stable diffusion [55] instead
of IP2P. SDS w/ IP2P performs updates on the NeRF based on the
SDS loss [51] calculated via IP2P. Our method results in sharp
outputs, while the baselines have failed on the task.

to a panda in our case, rather than trying to edit the whole
image to satisfy the instruction. Consequently, the edited
views in our method are more likely to be consistent, espe-
cially for nearby views, which is another reason that even
our edited regions are considerably sharper, e.g., the texture
of the panda’s fur. In Figure 9, NeRF-Art [73] has followed
the instruction and changed the face to the Tolkien Elf, but
the edited scene has quality artifacts associated with CLIP-
based [52] methods, and has changed irrelevant regions of
the scene, including the hair, background, and t-shirt. Fig-
ure 10 compares our method with additional baselines.
Relevance noise level. The relevance noise level, trel, is a
hyperparameter we use for the calculation of the relevance
field. Figure 11 shows a comparison between the maps cal-
culated using different noise levels. In our experiments, we
found trel = 0.8 to be reliable. This way, the relevance map
is calculated using predictions in the higher-noise stages.
As a result, the denoising process is fixating on the global
structure of the generated images, rather than the fine de-
tails [2]. Thus, the predicted relevance masks encapsulate
the global boundaries of the relevant regions. Moreover,
Figure 11 shows the rendering of the relevance field from
the same view. Since the relevance field is supervised using
maps from multiple views, it is effectively an ensemble over
multiple predictions, and is more accurate than each single
map. In addition to this ensemble nature, the inductive bias
of the NeRF architecture limits high-frequency field varia-
tions; hence, relevance renders provide a smooth consensus
over the global scene structure, with minimal noise.
Failure cases. The backbone of our method is a pre-trained
IP2P [6]. As a result, although our mask-guidance is able to
alleviate the over-editing problem of IP2P, and to fix the up-
sampling ambiguity issue, it still is unable to recover from
the cases in which IP2P fails badly. In Figure 12, we pro-
vide examples of such failures. For instance, in the first row,
the prompt is “change to a rosé”. Given the context of the
image, the goal is to only change the drinks. However, IP2P
has completely changed the field in the background and the
hair colour to pink. This failure is reflected in the predicted

“Turn the bear
into a panda”

= 0.2 = 0.4 = 0.6

= 0.99= 0.8 Relevance Field

Input View

Instruction

Figure 11. Comparison of the relevance maps calculated with dif-
ferent noise levels and a rendered relevance from a relevance field.

“Add a cat”

“Change to a rosé”

IP2P Relevance MapOursInput

Figure 12. Examples of the failure cases of our image editing
model. Due to the reliance of our model on IP2P for predicting
the relevance map and the edit, although our model is able to out-
perform IP2P by localizing the edits, it naturally cannot recover
from IP2P’s catastrophic failures.

relevance mask, which superfluously highlights those areas.
Although the result of our model is arguably better, it has
still edited parts that were unnecessary to change. In the
second example, “add a cat”, localizing the edit with re-
spect to the prompt is an ambiguous problem. The rele-
vance map has failed to localize a certain position for the
cat to be added, and instead, the person and the dog have
been replaced with cats. Our method is agnostic to the un-
derlying instruction-conditioned diffusion model, and can
benefit from swapping IP2P with a better one in the future.

6. Conclusion
We propose a method for predicting the relevance of

each image pixel to an editing task based on a text instruc-
tion. This is done by looking at the discrepancy between
a conditional and an unconditional pass over a diffusion-
based image editor. We use this relevance as a mask to
guide the generation and force the unmasked pixels to not
change, resulting in a localized image editor. We further
show that training a relevance field on the relevance maps
of the training views of a NeRF achieves similar localiza-
tions when editing 3D scenes. Our method shows superior

8

performance compared to the baselines in both image and
scene editing tasks.

Acknowledgments. This work was conducted at Sam-
sung AI Centre Toronto and it was funded by Mitacs and
Samsung Research, Samsung Electronics Co., Ltd.

References
[1] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended

diffusion for text-driven editing of natural images. In CVPR,
2022. 1, 2

[2] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Ji-
aming Song, Qinsheng Zhang, Karsten Kreis, Miika Aittala,
Timo Aila, Samuli Laine, Bryan Catanzaro, Tero Karras, and
Ming-Yu Liu. ediff-i: Text-to-image diffusion models with
ensemble of expert denoisers. arXiv, 2022. 1, 8

[3] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Pe-
ter Hedman, Ricardo Martin-Brualla, and Pratul P. Srini-
vasan. Mip-NeRF: A multiscale representation for anti-
aliasing neural radiance fields. ICCV, 2021. 2

[4] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 2

[5] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-
based neural radiance fields. ICCV, 2023. 2

[6] Tim Brooks, Aleksander Holynski, and Alexei A. Efros. In-
structpix2pix: Learning to follow image editing instructions.
In CVPR, 2023. 1, 2, 3, 5, 6, 7, 8, 12, 13

[7] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In ECCV, 2022.
2

[8] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. MobileNeRF: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. In CVPR, 2023. 1, 2

[9] Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and
Matthieu Cord. Diffedit: Diffusion-based semantic image
editing with mask guidance. ICLR, 2023. 1, 2, 5, 6

[10] Angela Dai, Yawar Siddiqui, Justus Thies, Julien Valentin,
and Matthias Niessner. SPSG: Self-supervised photometric
scene generation from RGB-D scans. In CVPR, 2021. 2

[11] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-
manan. Depth-supervised NeRF: Fewer views and faster
training for free. In CVPR, June 2022. 2

[12] Prafulla Dhariwal and Alex Nichol. Diffusion models beat
gans on image synthesis. NeurIPS, 2021. 1, 2

[13] Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, and
Daniel Cohen-Or. Stylegan-nada: Clip-guided domain adap-
tation of image generators. TOG, 2022. 5

[14] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,
and Yann N. Dauphin. Convolutional sequence to sequence
learning. In ICML, 2017. 2

[15] Ayaan Haque, Matthew Tancik, Alexei Efros, Aleksander
Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Edit-
ing 3d scenes with instructions. ICCV, 2023. 1, 2, 3, 4, 5, 6,
7, 8

[16] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,
Jonathan T. Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In ICCV, 2021.
2

[17] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt image
editing with cross attention control. ICLR, 2023. 1, 2

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. NeurIPS, 2020. 1, 2

[19] Jonathan Ho, Chitwan Saharia, William Chan, David J. Fleet,
Mohammad Norouzi, and Tim Salimans. Cascaded diffusion
models for high fidelity image generation. JMLR, 2022. 1, 2

[20] Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter
Abbeel, and Ben Poole. Zero-shot text-guided object gen-
eration with dream fields. CVPR, 2022. 2

[21] Ru-Fen Jheng, Tsung-Han Wu, Jia-Fong Yeh, and Winston H
Hsu. Free-form 3D scene inpainting with dual-stream GAN.
BMVC, 2022. 2

[22] Kacper Kania, Kwang Moo Yi, Marek Kowalski, Tomasz
Trzciński, and Andrea Tagliasacchi. CoNeRF: Controllable
neural radiance fields. In CVPR, 2022. 2

[23] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen
Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:
Text-based real image editing with diffusion models, 2023.
1, 2

[24] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. TOG, 2023. 2

[25] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv, 2022. 3

[26] Zhengfei Kuang, Fujun Luan, Sai Bi, Zhixin Shu, Gordon
Wetzstein, and Kalyan Sunkavalli. PaletteNeRF: Palette-
based appearance editing of neural radiance fields. In arXiv,
2022. 2

[27] Andreas Kurz, Thomas Neff, Zhaoyang Lv, Michael
Zollhöfer, and Markus Steinberger. AdaNeRF: Adaptive
sampling for real-time rendering of neural radiance fields.
In ECCV, 2022. 2

[28] Verica Lazova, Vladimir Guzov, Kyle Olszewski, Sergey
Tulyakov, and Gerard Pons-Moll. Control-NeRF: Editable
feature volumes for scene rendering and manipulation. In
WACV, 2023. 2

[29] Zuoyue Li, Tianxing Fan, Zhenqiang Li, Zhaopeng Cui,
Yoichi Sato, Marc Pollefeys, and Martin R Oswald. Comp-
NVS: Novel view synthesis with scene completion. In
ECCV, 2022. 2

[30] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler,
Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution
text-to-3d content creation. In CVPR, 2023. 2

[31] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. BARF: Bundle-adjusting neural radiance fields.
In ICCV, 2021. 2

[32] David B Lindell, Dave Van Veen, Jeong Joon Park, and Gor-
don Wetzstein. BACON: Band-limited coordinate networks
for multiscale scene representation. In CVPR, 2022. 2

9

[33] Hao-Kang Liu, I-Chao Shen, and Bing-Yu Chen. NeRF-In:
Free-form NeRF inpainting with RGB-D priors. In arXiv,
2022. 2

[34] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and
Joshua B. Tenenbaum. Compositional visual generation with
composable diffusion models. ECCV, 2023. 3

[35] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object, 2023. 2

[36] Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard
Zhang, Jun-Yan Zhu, and Bryan Russell. Editing conditional
radiance fields. In ICCV, 2021. 2

[37] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher
Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting
using denoising diffusion probabilistic models. In CVPR,
2022. 1, 2

[38] Nelson Max and Min Chen. Local and global illumination in
the volume rendering integral. Technical report, Lawrence
Livermore National Lab (LLNL), Livermore, CA (United
States), 2005. 3

[39] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-
jun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Guided
image synthesis and editing with stochastic differential equa-
tions, 2021. 1, 2, 5, 6

[40] Aryan Mikaeili, Or Perel, Mehdi Safaee, Daniel Cohen-Or,
and Ali Mahdavi-Amiri. Sked: Sketch-guided text-based 3d
editing, 2023. 2

[41] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ToG, 2019. 5,
6

[42] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2

[43] Ashkan Mirzaei, Tristan Aumentado-Armstrong, Marcus A.
Brubaker, Jonathan Kelly, Alex Levinshtein, Konstantinos G.
Derpanis, and Igor Gilitschenski. Reference-guided control-
lable inpainting of neural radiance fields. In ICCV, 2023. 1,
2

[44] Ashkan Mirzaei, Tristan Aumentado-Armstrong, Konstanti-
nos G. Derpanis, Jonathan Kelly, Marcus A. Brubaker, Igor
Gilitschenski, and Alex Levinshtein. SPIn-NeRF: Multiview
segmentation and perceptual inpainting with neural radiance
fields. In CVPR, 2023. 1, 2

[45] Ashkan Mirzaei, Yash Kant, Jonathan Kelly, and Igor
Gilitschenski. LaTeRF: Label and text driven object radi-
ance fields. In ECCV, 2022. 2

[46] Anish Mittal, Rajiv Soundararajan, and Alan C. Bovik. Mak-
ing a “completely blind” image quality analyzer. IEEE Sig-
nal Processing Letters, 2013. 5, 6

[47] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and
Daniel Cohen-Or. Null-text inversion for editing real images
using guided diffusion models. CVPR, 2023. 1

[48] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. TOG, 2022. 1, 2

[49] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh,
Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. GLIDE: Towards photorealis-
tic image generation and editing with text-guided diffusion
models. In ICML, 2022. 1, 2

[50] Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun
Li, Jingwan Lu, and Jun-Yan Zhu. Zero-shot image-to-image
translation. In SIGGRAPH, 2023. 2

[51] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. DreamFusion: Text-to-3D using 2D diffusion. In ICLR,
2023. 2, 5, 8

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. ICML, 2021. 5,
6, 8

[53] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with CLIP latents. arXiv preprint arXiv:2204.06125,
2022. 1, 2

[54] Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P.
Srinivasan, Ben Mildenhall, Andreas Geiger, Jonathan T.
Barron, and Peter Hedman. MERF: Memory-efficient radi-
ance fields for real-time view synthesis in unbounded scenes.
In arXiv, 2023. 1, 2

[55] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 1, 2, 5,
8

[56] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. CVPR, 2022. 3

[57] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee,
Jonathan Ho, Tim Salimans, David Fleet, and Mohammad
Norouzi. Palette: Image-to-image diffusion models. In SIG-
GRAPH, 2022. 1, 2

[58] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding. In
NeurIPS, 2022. 1, 2

[59] Chitwan Saharia, Jonathan Ho, William Chan, Tim Sali-
mans, David J. Fleet, and Mohammad Norouzi. Image super-
resolution via iterative refinement. TPAMI, 2022. 1, 2

[60] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 2

[61] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In CVPR, 2016. 5

[62] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In ECCV, 2016. 5

[63] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsupervised

10

learning using nonequilibrium thermodynamics. PMLR,
2015. 1, 2

[64] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. ICLR, 2021. 2, 4

[65] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-
lis Savva, and Thomas Funkhouser. Semantic scene comple-
tion from a single depth image. In CVPR, 2017. 2

[66] Yang Song and Stefano Ermon. Generative modeling by es-
timating gradients of the data distribution. NeurIPS, 2020.
1, 2

[67] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. NeurIPS, 2020. 2

[68] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David
McAllister, and Angjoo Kanazawa. Nerfstudio: A modular
framework for neural radiance field development. In SIG-
GRAPH, 2023. 4

[69] Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srini-
vasan, Edgar Tretschk, Yifan Wang, Christoph Lassner,
Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lom-
bardi, Tomas Simon, Christian Theobalt, Matthias Niessner,
Jonathan T. Barron, Gordon Wetzstein, Michael Zollhoefer,
and Vladislav Golyanik. Advances in neural rendering. In
SIGGRAPH, 2021. 2

[70] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 2

[71] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF:
Structured view-dependent appearance for neural radiance
fields. CVPR, 2022. 2

[72] Can Wang, Menglei Chai, Mingming He, Dongdong Chen,
and Jing Liao. CLIP-NeRF: Text-and-image driven manipu-
lation of neural radiance fields. CVPR, 2022. 2

[73] Can Wang, Ruixiang Jiang, Menglei Chai, Mingming He,
Dongdong Chen, and Jing Liao. Nerf-art: Text-driven neural
radiance fields stylization. TVCG, 2023. 5, 7, 8

[74] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. IBRNet:
Learning multi-view image-based rendering. In CVPR, 2021.
2

[75] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Vic-
tor Adrian Prisacariu. NeRF--: Neural radiance fields with-
out known camera parameters. In arXiv, 2021. 2

[76] Silvan Weder, Guillermo Garcia-Hernando, Aron Monsz-
part, Marc Pollefeys, Gabriel Brostow, Michael Firman, and
Sara Vicente. Removing objects from neural radiance fields.
In CVPR, 2023. 2

[77] Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han
Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui.
Learning object-compositional neural radiance field for ed-
itable scene rendering. In ICCV, 2021. 2

[78] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 2

[79] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In CVPR, 2021. 2

[80] Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,
Rongfei Jia, and Lin Gao. NeRF-editing: geometry editing
of neural radiance fields. In CVPR, 2022. 2

11

Figure 13. Quantitative comparison of our image editing method

with different mask threshold values, τ , against IP2P [6]. The text-

guidance is set to 7.5 for both method. For IP2P and our method,

SI is changed between [1.2, 2.2] and [1.0, 2.2], respectively.

A. Mask threshold effect

Figure 13 provides a quantitative comparison of our im-
age editing method with different mask thresholds against
IP2P [6]. Our method produces outputs that closely reflect
the desired edits (x-axis) while remaining consistent with
the inputs (y-axis) by confining the edits in the relevant
region. However, while increasing the mask threshold re-
sults in higher fidelity to the input, overly increasing it can
prevent the model to edit the parts that actually matter; the
lines in Figure 13 cover a smaller text-image direction sim-
ilarity region as the mask threshold, τ , is increased. Based
on this experiment, we’ve typically set τ between [0.4, 0.5]
throughout the paper.

We further provide a qualitative example to showcase the
effect of the mask threshold on the generation of the edited
image (Figure 14). Setting the mask threshold, τ , to 0 re-
sults in every pixel to be masked. As a result, our model
with τ = 0 is equivalent to IP2P [6]. For each τ , we provide
results with different image guidance scales, SI . As evident
in the results, in IP2P, simply increasing the image guidance
scale is not enough to localize the edits; with SI = 1.0, the
background and the clothes are drastically changed. When
setting SI = 3.0 in IP2P, the woman’s collar and the man’s
shirt are still changed to yellow, while the faces no more
look like the Simpsons characters; increasing SI has an ad-
verse effect on the text-image similarity, which is consis-
tent with our quantitative findings in Figures 4 and 13. On
the other hand, changing τ provides a different guidance
knob to the user, and allows them to control the region to be
edited, with a minimal damage to the regions that actually
need to be modified.

“Make them look like

Simpsons characters”

Input Image Relevance Map Instruction

τ = 0.0 τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

S
I

=
1

.0
S

I
=

1
.5

S
I

=
2

.0
S

I
=

2
.5

Text-guidance Scale

ST = 7.5

IP2P Ours

S
I

=
3

.0

Figure 14. Qualitative comparison of the effects of the mask

threshold, τ , and the image guidance scale, SI . Increasing the

image guidance scale improves the similarity of the output and the

input image, but significantly decreases the intensity of the edit,

resulting in a failure. In contrast, τ provides a knob to the user to

control the region of the edit, with reduced effects on the quality

of the edit.

B. Additional qualitative comparisons

In Figure 15, we provide additional example to compare
our localized image editing method with IP2P. In all of these
examples, SI is between [0.8, 1.0], and ST is always 7.5.
Mask thresholds are either 0.4 or 0.5. Foe each of the ex-
amples, we further provide the relevance map predicted by
our method. Our results are more consistent with the in-
put image by only locally changing the inputs in the regions
with high relevance values. Meanwhile, our method has fol-
lowed the instructions closely, and has resulted in images
with similar or better edit qualities compared to IP2P.

12

IP2P RelevanceOursInput

“Make it a beach”

"Make the fox a cat"

“Replace the barn with a castle”

“Add a flower bed”

“Turn into an anime”

"Make the vista a desert"

"Make the owl a falcon"

"Make it more punk rock"

"Make the girl wear a fedora" "Turn it into a modern schoolhouse"

IP2P RelevanceOursInput

“Turn it into a Hotel” "Add a mountain range"

Figure 15. Additional Qualitative comparison of our image editing results against IP2P [6]. For each image, we show the instruction,

outputs of IP2P and our model, and the relevance map predicted by our model. Our model follows the instruction, while maintaining

more consistency with the input image. This is due to the relevance-guidance, as only pixels with high relevance values are allowed to be

modified.

C. Sample relevance field renderings

In Figure 16, we visualize sample relevance fields trained
on different scenes and different edit instructions. Each rel-
evance field is trained via 2D supervisions from relevance
maps of the training views. As shown in the results, the
relevance fields are mainly activated around the region that
should be edited. To edit a NeRF, we use the rendered views
from the relevance field as relevance-guidance for editing
training views. As a result, the updates of training views
during the iterative update process are only locally changed,
and the changed region is consistent across different views.

Note that the relevance field’s densities (geometry) is
always queried from the main NeRF model that is being
edited. This is to ensure that potential inconsistencies be-
tween 2D relevance maps of different views does not hurt
the main NeRF, and to enforce 2D relevance maps to be
projected to the actual geometry of the scene and to be-
come 3D-consistent; otherwise, the relevance field’s geom-
etry might converge to a degenerate solution to justify the
inconsistencies. As the main NeRF is being updated to-
wards the desired edited NeRF, its geometry might change.
In that case, since the relevance field shares the same ge-

13

ometry, its 2D maps will be projected to the updated NeRF.
Thus, during each update, the relevance field localizes the
edits on the current version of the main NeRF. This allows
slow changes in the geometry of the scene while only lo-
cally updating the views at each step, e.g., the addition of
the mustache or the sunglasses, which require changes to
the densities.

D. Additional Details

For Figure 5, we set ST and SI to 7.5 and 1 respectively,
while selecting τs proper to each edit. In Figure 6, for our
method, we set ST = 7.5, SI = 0.8, and τ = 0.4. For the
other methods we used their default set of hyperparameters.
In Figures 12 and 15, we set ST = 7.5, SI = 0.8 for both
methods and τ = 0.4 for our method. For NeRF editing
experiments, τ is always set to 0.5, and the guidance scales
are as follows:

• Bear: ST = 6.5, SI = 1.5

• Face: ST = 7.5, SI = 1.5

• Farm: ST = 12.5, SI = 1.5

• Fangzhou: ST = 6.5, SI = 1.5

14

Original

NeRF

Relevance

Field

Relevance

Field

Relevance

Field

Relevance

Field

Relevance

Field

Relevance

Field

Original

NeRF

“Give him blonde hair”

“Give him sunglasses”

“Give him a mustache”

“Put him in front of a green wall”

“Turn the bear into a panda”

“Turn the bear into a grizzly bear”

Figure 16. Sample rendered relevances from relevance fields trained on different scenes and different edit instructions. Each relevance

field is visualized from multiple views, in addition to the corresponding views from the original NeRF model of the scene. Notice how

each relevance field is mostly activated around the region that is highly relevant to the edit. For example, in the face scene and with the

instruction “Give him blonde hair”, only the hair is given high values in the field. This field allows to localize edits of the training views

during each iterative update in a 3D consistent manner.

15

	. Introduction
	. Related work
	. Background
	. Method
	. Relevance map calculation
	. Relevance-guided image editing
	. Relevance field for scene editing
	. Implementation details

	. Experiments
	. Results

	. Conclusion
	. Mask threshold effect
	. Additional qualitative comparisons
	. Sample relevance field renderings
	. Additional Details

